On RSA-Based Signature Standards

John Linn Principal Architect, RSA Laboratories June 2000

Presentation Goals and Scope

- Discuss approaches and harmonization for RSAbased signatures:
 - Various digital signature methods exist:
 - specifics are non-interoperable
 - standardization, adoption, and deployment vary
 - New techniques reflect advancing state-of-art
- Emphasizing standards aspects, not mathematics or product features

The Integer Factorization (IF) Family

- Cryptography based on the difficulty of the integer factorization (IF) problem
- Modulus n = pq
- Public exponent e, private exponent d
- RSA: e odd
- Rabin-Williams: e even; conditions on p, q
 - outside primary scope of this presentation

IF Public-Key Techniques

- Following IEEE P1363 classification
- Primitives are mathematical operations on integers, field elements
- Schemes are sets of operations on messages
- Schemes are built up from primitives, "embedding methods" mapping between messages, integers

Notation

- M message (string)
- m message representative (integer)
- s signature (integer)
- SP Signature Primitive $(m \rightarrow s)$
- **VP** Verification Primitive $(s \rightarrow m)$

Embedding Methods

- Mappings between message M, integer message representative m
 - Embed: $M \rightarrow m$
 - Extract: $m \rightarrow M$
 - Check: M, m consistent?
- Also called "encoding methods"
- Security goals: one-way, collision-resistant, no mathematical structure

Example Schemes in the IF Family

- Signature schemes with appendix:
 - ANSI X9.31
 - PKCS #1
 - Bellare-Rogaway PSS
- Signature schemes with message recovery:
 - ISO/IEC 9796-1, 9796-2
 - Bellare-Rogaway PSS-R
- This talk focuses on the first set

IF Signatures with Appendix

• Primitives:

- SP: $s = m^d \mod n$
- VP: $m = s^e \mod n$

Signature operation:

- m = Embed(M)
- -s = SP(m)

Verification operation:

- m = VP(s)
- Check(*M*, *m*)

Contemporary Standards

- FIPS 186-2
- PKCS #1
- X9.31

Status of FIPS 186-2

- FIPS 186-2, Digital Signature Standard (February, 2000), specifies digital signatures using SHA-1 with several types of public-key cryptography
 - DSA, specified within FIPS 186-2
 - RSA, via ANSI X9.31 or (until mid-2001) PKCS #1
 - Elliptic Curve DSA via ANSI X9.62
- NIST-accredited program validates implementations
 - currently, testing available only for DSA; vendoraffirmed conformance possible for other algorithms
 - validation targets both interoperability and assurance aspects

PKCS #1: Status

- PKCS #1 v1.5 (November 1993) defines encryption and signature facilities with ad hoc padding
 - widely adopted in industry, Internet standards
- PKCS #1 v2.0 (October 1998) defends against encryption attacks (e.g., Bleichenbacher) with Optimal Asymmetric Encryption Padding (OAEP)
 - being considered for use with some Internet standards
- PKCS #1 v2.1 (draft, September 1999) provides analogous defense against potential signature attacks with Probabilistic Signature Scheme (PSS)
- Availability: http://www.rsalabs.com, Internet Informational RFCs 2313 (v1.5), 2437 (v2.0)

PKCS #1 (v1.5): Format and Usage

- Embed(*M*) =
 00 01 ff ... ff 00 || HashAlgID || Hash(*M*)
- Ad hoc design
- Widely deployed, incorporated in many Internet standards
 - PKIX profile
 - SSL/TLS certificates
 - S/MIME
- Being incorporated into IEEE P1363a

PKCS #1: Signature ASN Elements

- pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1)}
- md5WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 4 }
- sha-1WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 5 }
- id-RSASSA-PSS OBJECT IDENTIFIER ::= { pkcs-1 10 }
- RSASSA-PSS-params ::= SEQUENCE {
 hashFunc [0] AlgorithmIdentifier {{oaepDigestAlgorithms}}
 DEFAULT sha1Identifier,
 maskGenFunc [1] AlgorithmIdentifier {{pkcs1MGFAlgorithms}}
 DEFAULT mgf1SHA1Identifier,
 salt OCTET STRING OPTIONAL }

ANSI X9.31: Status

- Issued September 1998
- Like PKCS #1 v1.5, uses an ad hoc padding scheme
- Availability: purchase from ANSI
- OID (OIW SecSig, X9.57): {1 3 14 3 2 15}, shaWithRSASignature, intended for use with X9.31 padding
- Intent within X9F1 for document to be reopened to incorporate PSS

ANSI X9.31: Format and Usage

- Embed(*M*) =
 - 6b bb ... bb ba || Hash(*M*) || 3x cc
 - where x = 3 for SHA-1, 1 for RIPEMD-160
- Ad hoc design
- Incorporated in several standards
 - IEEE P1363, ISO/IEC 14888-3
 - **US NIST FIPS 186-1**
- Limited industry and Internet adoption

X9.31 Constraints on Keys

- X9.31 requires strong primes, specifies generation techniques
 - need for strong vs. random primes is controversial
 - adds performance cost and complexity, defends against (some) varieties of trapdoors, particular factoring attacks
- X9.31 requires modulus sizes in fixed units (1024, 1280, 1536, 1792, 2048, ...)

ANSI X9.31 vs. PKCS #1: Technical Comparison

- Both are deterministic
- Both include a hash function identifier
- Both are ad hoc designs
 - both resist Coron-Naccache-Stern / Coppersmith-Halevi-Jutla attacks on ISO/IEC 9796-1,-2
- PKCS #1 scope concerns format interoperability;
 X9.31 also imposes constraints on keys
 - PKCS #1 accepts a superset of the RSA keys allowed by X9.31 constraints

Future Directions

- Probabilistic Signature Scheme (PSS)
- Harmonization: issues, status, and a proposed approach

Prudent Security

- What if a weakness is found in ANSI X9.31 or PKCS #1 signatures?
 - no proof of security, though designs are well motivated, supported by analysis
 - would be surprising but so was vulnerability in ISO/IEC 9796-1
- PSS embodies "best practices," prudent to improve over time

Bellare-Rogaway PSS

(Probabilistic Signature Scheme, Eurocrypt '96)

- Embed(*M*) =
 - 00 || w || [Expand(w) \oplus (r || 00 ... 00)]
 - where w = Hash(r || M), r random
- Provably secure design
- PSS-R variant supports signature with message recovery

PSS: Standardization Status

- Standardization of PSS is being pursued in several forums
 - To be included in IEEE P1363a, PKCS #1 v2.1
 - Intent within X9F1 to reopen X9.31 to incorporate PSS
 - Intent to include PSS-R in rev. to ISO 9796-2
- Alignment among forums is ongoing

Patent Issues

- No patents reported to IEEE P1363 for ANSI X9.31, PKCS #1 formatting
- PSS embedding method is patent pending by University of California
 - UC agrees to waive licensing on PSS for signatures with appendix if adopted in IEEE standard (June 15, 1999 letter)
 - informal agreement to extend licensing waiver to other standards bodies
 - "reasonable and nondiscriminatory licensing" for signatures with message recovery

Standards vs. Theory vs. Practice

- ANSI X9.31 is widely standardized
- PKCS #1 is widely deployed
- PSS is widely considered secure

How to harmonize?

Challenges

- Infrastructure changes take time
 - on the user side
 - in product cycles
- Specifications vary in scope
 - complicates modularity among choices
- Many communities involved
 - formal standards bodies, IETF, vendors, certificate authorities, validators, ...

Proposed Approach

- Short term: Continue to support both PKCS #1 and ANSI X9.31 signature formats
 - e.g., in IETF profiles, FIPS validation
 - continue coexistence until PSS mature, available
- Longer term: Move toward PSS signatures
 - not necessarily, but perhaps optionally with "strong primes"
 - upgrade in due course e.g., along with AES algorithm, new hash functions
- General: consider decoupling treatment of interoperability vs. assurance characteristics

– profile and validate aspects independently?